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ABSTRACT

One of the more critical problem areas in the application
of strapdown inertial techniques to the navigation of commercial
aircraft is that of initial alignment. A two stage self-alignment
scheme which appears promising in this regard is explored. The
first or "coarse" alignment stage utilizes the measurement of the
gravity and earth rotation vectors to directly compute the trans-
formation matrix relating the body frame to a reference frame.
A linearized error analysis is presented. The second "fine"
alignment stage corrects the initial estimate of the transforma-
tion by feeding back a computed angular velocity command to the
transformation computer. This correction signal is computed by
using estimates of the error angles between a known reference
frame and the corresponding computed frame. Kalman filtering
techniques are used to implement this technique and an error

analysis is presented.
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SECTION I

INTRODUCTION

The current interest in analytic or strapdown inertial navigation systems for
aircraft application is directly attributable to the revolution in computer technology
which now allows solution of the navigation equations with a machine whose physi-
cal characteristics are compatible with aircraft requirements. The concepts in-
volved in the design of such a system have been thoroughly explored in the litera-
ture (see Refs. 1 and 2 for instance), while the error analysis and detailed
application is a subject of current research (Refs. 3, 4, and 5). Analytic systems
offer the possibility of higher reliability than present gimballed systems since
redundancy can be provided at the component level rather than at the subsystem
level, Thus, the analytic inertial navigation system, augmented by appropriate
navigation aids to bound the inherent long term error, is receiving serious con-

sideration for application in the advanced supersonic transport,

One of the more critical problem areas in this application is that of initial
alignment within the environment and time constraints imposed by commercial
aircraft operation, That is, the system must be aligned within the necessary
tolerances in the short period of time necessary for commercial success of the
aircraft in the face of deleterious motions of the aircraft caused by wind gusts,
the loading of passengers and cargo, fuel ingestion, etc. This paper will explore

a two stage alignment technique which appears to be promising in this regard.

The problem of alignment in a strapdown inertial guidance system is basically
that of determining the transformation matrix, which relates vectors in the instru-
mented body coordinate frame (b-frame) to the same vectors expressed in inertial
coordinates (i-frame) or equivalently, in some other computation frame, Two
methods for self-contained alignment will be considered here. Both of these use
the fact that two vectors uniquely determine the transformation matrix between

two coordinate frames, if they are known in both frames and are not colinear.
The two procedures are:

1, Analytic Alignment

The transformation matrix is computed directly using the knowledge

of g and Wi i. e., the gravity and earth rotation vectors, in the two



frames, These vectors are known in the inertial frame to the ac-
curacy of the time measuring device used. The body frame coordi-
nates are measured by the accelerometers and gyros and therefore

contain instrument uncertainties,

2, Corrective Alignment

If it may be assumed that some estimate of the transformation ma-
trix is available, then this initial matrix can be corrected by feed-
ing an appropriate rate signal to the transformation computer, This
correction signal can be computed by using estimates of the error
angles between a known reference frame and the corresponding

computed frame,.

For either alignment scheme, the instrumented frame is taken to be station-
ary with respect to the earth, except for disturbances which occur due to wind
gusts or loading and unloading of the vehicle in which the system is mounted. The
application to a supersonic transport airliner is of particular interest, since ex-
ternal alignment techniques would appear to be impracticable for that vehicle.
However, no data is available at this time on the motion of such or a similar air-
craft due to wind gusts and other disturbances on the ground. The two methods
will now be treated in detail,



SECTION II

ANALYTIC ALIGNMENT

A, Description

It is convenient to split the transformation between the b and i frames into
two parts by using the local vertical or navigation coordinate system (n-frame),
as an intermediate frame, The transformation of the specific force vector f can

then be visualized as follows:

fb i

i
i f
—"——-Tgb —-Qn s

where the vector superscript refers to the coordinate system in which the vectors
are resolved. The transformation Q_;l, i, e. from n-frame to i-frame, is known
as a function of time for any given latitude and longitude. The transformation _(:_‘]x;
remains to be determined. The gg matrix can be found by the estimation of two
vectors; namely the earth rate vector, Do and the gravity vector, g in the two
frames of interest, For the body frame these vectors are obtained by the gyros
and the accelerometers respectively, and in the navigation frame they are known
and constant, which makes this frame a convenient reference, The gravity and

angular rate vectors transform according to the following expressions:

b b _n
g ~Lhe
b _ b n
®je = £n Lie
If y is defined asy=gXw, .. we also have:
b_ b.n
v =C v

-1 T
Since QE =<§2> =<g;’> these three vector relations can be written:



(zn)T (zb>T
or finally: ) ~ ) B _r —__
-1
(g“)T (gb>T
SR AN A e
_(gn>T_ i (zb>TJ

Thus the alignment matrix is uniquely defined provided that the inverse indicated
above exists, This inverse exists if no one row of the matrix is a linear combina-
tion of the remaining rows, This condition is always satisfied if the two vectors,
g and Wios are not collinear, These vectors coincide only at the earth's poles,
where the analytic alignment procedure is useless, Kasper(s) shows that for fixed
base alignment, the analytic scheme compares favorably with the existing optical

alignment methods,

In the present case, however, its performance deteriorates because of the
angular disturbance vibrations and accelerations, The effect is two-fold; first,
the disturbances corrupt the measurements of gb and io_?e since the measured

quantities are:

-£=§+£d

= +
Lip " ZLie T 24
where d indicates the disturbance quantities; secondly, _gb and i"]ioe become functions

of time to some extent, This can be seen from the fact that since _c_b?e = Q,

;b =-Qb wb
—ie —nb —ie

where the elements of the skew symmetric matrix ng are given by the components
of @3 It is, therefore, necessary to introduce some filtering in order to reduce
the effects of these vibrations. A simple low-pass filter could be used to obtain
the average values of the measured quantities, This would tend to give the aver-

age alignment matrix, It is clear, however, that the instantaneous position of the



body frame can vary considerably from its average position, depending upon
the motion of the aircraft. As a result, a large initial misalignment
could exist when the system is switched to the navigation mode of opera-
tion if only an average alignment were achieved. If the statistics of

the aircraft vibrations were available, a more elaborate optimal filter-
ing scheme sould be constructed. However, it could prove difficult to
separate the perturbations of g?e w4 and £d
by linear filtering, since it is very likely that these components contain

and ib frocm the disturbances

the same frequencies. In addition some time lag would be introduced by
the filter. The analytic alignment method is therefore mainly useful as
an average alignment, which is a rapid way of obtaining an initial esti-

mate of the transformation matrix.

B. Error Analysis

An error anaylsis for this alignment scheme, which takes into account
the effect of instrument uncertainties and base motion is not readily
amenable to analytic methods. The analysis which follows is intended to

indicate an approach which will result in equations which can be solved on

a digital computer. The equation for g; can be written in the form:
n —
p = M
where F 4 -1 ) _
T b T
(g™ (g")
T
_ n _ b
M= (Eie) and Q= (Qie)
T
n T
b
L) ] Py

The elements of M are conétants in this case, but Q contains the measure-

ment and instrument uncertainties. The above equation can be rewritten:
n_
Cpy =M (Q + 8Q)

where b' indicates the computed body frame and 6Q is the 3 x 3 uncertainty

matrix, Thus:

n _ .n b _ .n -1
Eb- = gb Sb' - Eb[l +Q Q]
which shows that
che = L+ Q7 sl




If the lengths of the measure vectors gb, wb

and 2? and the angles

=ie’

between them are required to be constant, then the matrix Q—l6g must

necessarily be of the skew symmetric form:

-b b
4 Y

0 -b
x

b (0]
X .

where bx, by’ and bz are the misalignment angles between the b and

the b' frames about the x, y, and z body axes, respectively.

The b's are, of course, directly related to the instrument

uncertainties.
g_léQ where

This relationship is found by direct evaluation of

A particularly simple result emerges if the body frame is taken

to be aligned with the local geographic frame.

found that:
[ ng éwx
——tanL + secL
9 ie
_ 8g Sw
Q 16Q = - —YtanL - —IsecL
= = g W,
ie
9%
B g

In this case it is

8g Sw 6gz éwz
—Ytanl + —LsecL ——tanl, + —=secL
g wie 9 wie
Sw 8g dg Sg
a—ﬁsecL + =2+ Ztant - X
ie g g
89, g,

g g J

where L is the geographic latitude

It is seen that the matrix is not in the desired skew symmetric form.

Moreover, it is difficult to directly apply the constraints that the

lengths of the measured vectors and the angles between them be constant.

This problem is resolved
computed transformation,

setting:

*
-C_: =

T
n n n
cp [(Eh) (Cpo)]

in a practical manner by requiring that the

gg,, be orthogonal. This accomplished by

-1/2



where

*
C ~ optimal orthogonal approximation to Cn. in the sense

that trace * n. T n is minimized,
(g - (_:_bl) (g - _qbl)
Since
n _ . n -1
Cpr = CplI + Q7 6Q)
T -1/2
* - - -
¢’ = cprr + o tearir + st @ h  + g teql

where products of error quantities have been neglected. If a

series expansion is made of the square root term, there results:

* _.n 1, -1
c = gb {x + 5[9

The expansion in the square brackets is found to be skew symmetric,

since
r - * *-
0 -b b
Z y
* n b* O b*
c = gb I+ z “Fx
* *
-b b o}
[y x J
where
* _ (Sg
b = _x
g
b; = _l(égx - °92 tanL - z secL)
g g wie
* g _ Sw
bz = —tanL y secl, v
9 ©ie

Thus it is seen that one can expect to see a north level error
of about 3.4 Tin per milli ~g east accelerometer uncertainty. The
east level error due to north accelerometer uncertainty is 1.7 ﬁ?ﬁ/milli ~g;
to azimuth accelerometer uncertainty, 1.7 min tanL/milli -g; and to azimuth
gyro uncertainty 1.7 min secL/meru. The azimuth error angle due to the
east accelerometer uncertainty is given by -3.4 ﬁzﬁ/milli ~g, and due to

east gyro uncertainty is given by -3.4 min secL/meru,.




SECTION III

CORRECTIVE ALIGNMENT

A. Description

This procedure can be mechanized in the following manner, using the local

vertical navigation frame as a reference frame, (See Fig, 1.) As before the

b

b b ' '
[ f - 1 £
— ACC. - T_— C ———
() n
I
b “n'y Lie
(u)
b b - ’ ' )
— b n n n v
Zie T2d W o We “wie Twy ¥ (u)wn
——e———] GYROS & & — Qb -~ =

 FILTER jeug—vd

S
1|=>

bl

Lie

Fig. 1. Self corrective alignment scheme.

transformation consists of two steps; i. e, from the instrumented body frame, 'b",

to the navigation frame, ''n'", and then to the inertial frame used for computations,

It is assumed here that an initial estimate of the transformation matrix is
available. This corresponds to a small angle misalignment of the computed and
actual reference frame, The method, basically, consists of detecting the error
angles between these two frames via the processed accelerometer and gyro signals
and generating a signal to the transformation computer in order to reduce these
angles as close to zero as possible, At the same time some compensation must

be provided for the disturbance angular vibrations similar to the base isolation of



1
a gimballed platform system. The transformation matrix gg is updated using

the relation:

n' _ n' b
Sb _gb S_anb (1)

where Qg'b is a skew symmetric matrix of the angular velocity gg,b, which is fed

to the transformation computer. This angular velocity signal would ideally be:

_ b b
Lab Lemd +fd (2)

where ®omd is the computed correction signal and _o_)g compensates for the vibra-

tions of the instrumented body frame. In Fig, 1, gg is obtained by subtracting
t

!
glige from the total angular velocity, but since (—»?e is not equal to Bki)e and the signal,

in addition, contains the gyro drift (U)gb, CHETR becomes:

b

- b
Lo T Lemd +ﬁ’d+_]:?’_i°'

(3)

Here, B is defined as before as the antisymmetric matrix of the misalignment

angles between the actual and computed body frames, b and b,

[0 “b_ by?

B. Error Analysis

The error angle equations can now be derived: Substituting the skew sym-

metric form of Eq. (3) into Eq. (1) yields:

n' _ n'ob n'ob, n' . b . .n' b
S TS Zema TS B TS By T & (4)

where 6&?6 is the skew symmetric form of B —(-"}iae' Noting that

nt o on' ‘n, ‘n' n
and
cP = clgP 5)
Ep T Epar (

since the ''b'' frame rotates with an angular velocity of @9 with respect to the

"n'" frame, Eq. (4) then becomes:




+c™ 59, + _C_IIO" @ QP (6)

n' n o
gngb_g

1
Using the fact that _(_32 I- N, where N is the skew symmetric matrix of misalign-

ment angles between ''n" and "'n'", and N = Qgggg . Eq. (6) reduces to:

P _ b _ b

B = Qcmd (u) 68 (M
or equivalently for N:

g o= ol _ n _ n

N gzcrnd (w) 2 6§?ie (8

where higher order terms have been neglected.

. n' . .
In order to drive N to zero, ®omq can be chosen to be a linear function of

the measured estimate of N. The vector form of Eq. (8) then becomes:

A+Ki=-e"-Q0n (9)

where K remains to be specified, ﬁindicates an estimate of n; [ﬁ =n+ 6nj. Itis

noted that the three scalar equations are coupled through the term S_Z?e n,

The error angle vector, n, must now be measured. A direct indication of
the three components can be obtained from the computed horizontal components
of g and the computed east component of Wios which are approximately proportional
to n_ ny, and nZ. Specifically, since

n' _ n'b _ - n _ - n n n
i, =, =Ad-Nf = I-N[f+f+@1i]
and
=40 0 g}
then
f =-n_g+ of (10a)
Xp! y *n
f =n_g+ of (10b)
Yt X Yn

where 6fX and 6f represent the uncertainties in the computed north and east
n n
specific force components which are caused by the accelerometer uncertainties

and the disturbance accelerations. In a similar fashion the computed east com-

ponent of earth rates is given by:

10



wyn' =-w, cos L(n +n tan L)+ 5wyn (10c)

where L is the geographic latitude and 6w_ represents the uncertainty in the com-
n
puted east component of earth rate caused by the gyro uncertainties and the dis-~

turbance angular velocity. This arrangement for the extraction of n is shown in
Fig., 1.

Alternatively, the vector products of the measured and actual vectors,

1 1
& X _g_?n and gpe X g?e , could be used to indicate the misalignment. It is now
m

i
necessary to determine the form of the K matrix in Eq. (9). Assuming for a

moment that no disturbance errors exist, Eq. (9) becomes:
. _ n _
n=9,.n-Kn (9a)

which can be identified with the general form:

X=Fx+u (10)
where
Xx=n
F = Q0
= —ie
u=-Kn

One way of determining K is to define a cost function of the form

t
f
173 f [x" Ux+u' Wujdt (11)
t
o

where to and 1:f are the initial and final times of the process, respectively, and
U and W are positive definite weighting matrices which will be chosen to be con-
stant here. The task of U and Wis to insure that x and u remain within acceptable

levels. Bryson(7) shows that a reasonable choice for U and W is:

1 0 0 —-21 0 0

le u11rn

- 1 _ 1
I_.I = 1] 3 0 and _W = 0 —-g— 0
Xom u2m
1 1
0 0 —X2 0 0 ____u2
| 3m ] 8 3m ]

11




Xin and uj  are the upper bounds on the state and control and will be taken to be

constant,

(7)

It can be shown that in order to minimize the performance index, K should

have the value:
g |
K=w1ls (12)

where S is the solution of the steady state Riccatti equation:

SFE-Fs+swls-u=op (13)
where
0 -w. w.
le le
y
F = w. 0 -W.
—_ 1le le
X
-w w. 0
1e le
X

Equation (13) is most easily solved by numerical methods,

Another way of determining Kis to require that Eq, (9) become uncoupled,
This can be done approximately since E?e is constant for a given latitude, so by
choosing the off-diagonal terms of K equal to the corresponding terms of the anti-

symmetric matrix Qlile, Eq. (9) becomes:

1S5,

+Kn=-we’ -Kén (14)

where I_{d is a diagonal matrix,

Because of the uncertainties in the measurements of n, which are due to
instrument uncertainties and vibrations of the instrument frame, there remains
a weak coupling of the equations (14) due to the term gég, but this effect is of

secondary importance and will be neglected.

The effect of measurement uncertainties and gyro drift on the solution for n

is then, neglecting the weak coupling effects:

IS .

n
+Kyn = - e -K, bn (142)

where 6n represents the error inthe estimate of n,

If the statistics of the disturbances w4 and f, were known, it would be possible
to construct a filter which separates the signal from the noise in some optimum

way. A low-pass filter which approximately averages the input, may attenuate @y

12



sufficiently, but since (U)wy, (U)fX and (U)fy can be expected to be very nearly
constant during the alignment there will be a steady state alignment error due to

gyro drift and accelerometer bias.

C. Filtering

The main problem in the alignment process is to obtain sufficiently good es-
timates of the error angles, After such an estimate has been made, the trans-
formation matrix can be corrected almost instantaneously (assuming small angles),
This suggests that the updating could be performed discretely rather than continu-
ously. The in-between intervals would then be used for the estimation process.
The correction signals would consist of the angular rotations about each axis
needed to align the two frames in question. The equation of the error angles in

this case becomes approximately:
nt + At) = n(t) + An(t) (15)
where

An(t) = -K pAt - (@) @™ At + Q7 n(t) At

and -%gAt is the desired rotation. The length of the interval depends on how
much time is needed to get a satisfactory estimate of the error angles, If, for

example, wy = A sin wt, the average is zero, but the computed average would be:
y

T
[ A sin wtdt =2 T 1 - cos oT|
0

1

dyT

e

In this case T would therefore have to be long enough to bring this average reason-
ably close to zero. The filtering time thus more or less determines the alignment
time., Note that even without any disturbances some filtering is necessary because

of instrument noise.

Instead of a simple averaging procedure, a more complex optimum filtering
technique could be used. If it may be assumed that the statistics of the disturbance
vibrations can be produced by passing an uncorrelated Gaussian signal through an
appropriate shaping filter, then an optimum linear filter (Kalman filter) and
alignment controller could be constructed as shown in Fig, 2, Here v and u are
white noise signals and the system is augmented to include the state of the neces-
sary shaping filters in addition to the error angles n. The system equation is

simply:

4o

=Fx+y

13
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Fig. 2. Optimum linear filter.

and the measurements are given by:
m=Hx+u

The gain matrix k must be computed continuously by numerical solution of the co-

variance differential equation:

Tiq @Q=nn")

|H.

=FE+E

e

where

T

X>

E-= (% - X)X - x) and E(0) is known

Then the expression for Kj is:

K= EH HEH' +R)™!, where(R = uu’)
The feedback matrix C is chosen in the same way as for the deterministic system,
This procedure is valid, since it can be shown that the design of the optimum es-
timator and optimum controller are s(egs)arable and independent for a linear sys-
tem, which is excited by white noise, It is clear that this technique requires
a considerable amount of computations in order to adjust the filter gain, K4, con-
tinuously. There seems to be little point in pursuing this approach any further
until some information is available on the vibration statistics and a realistic

comparison of the different filtering schemes can be made,

14



D, Alignment Time and Accuracy

Without any uncertainty in the measurements of the misalignment angles and
with decoupled error channels the governing equations are:
. n
n.+k.n, =- W', | =X, ¥, Z
j i (u) j J > Y.
The time constant is 7. = 1/kj" k. would be chosen as large as practical in this

case and the alignment time could be made very short. A large kj also gives a

small steady state value of nj since:

(u)

Jss ]

However n,. cannot be obtained without uncertainty in a practical situation. The
alignment time therefore mainly depends on the time needed to make a satisfac-
tory estimate of n. and to a lesser extent on the initial value of n.. The time
needed for the estimation on the other hand, depends upon the frequency content
of the measurement noise. If only the constant component of the uncertainty is

taken into account, the uncertainty in the azimuth error measurement is given by:

() o Ei_'y o
6nz=w. cosL+tanL|:g I ]

1e X

and the total steady-state azimuth error becomes:

(u) w (u) w &f u) w
n = - zZ . Y _ -tanL| ¥ - —%
z k w, cos L g k
ss z ie v

The level errors can be found in a similar way and the steady state errors due to

accelerometer bias and gyro drift are:

(v w (u)f

n = - +
Xss kx g
. _ (w wy i (u)fX
Iss Ky g
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SECTION 1V

CONCLUSIONS

It has been shown that the analytic method of alignment is mainly useful for
obtaining an average transformation between the two frames. Since no lineariza-
tion has been used, this method is well suited for calculating an initial estimate

of the transformation matrix,

The second method, which has been analyzed by linearizing about the true
alignment position is better suited for fine alignment, since compensation for the

disturbances is provided in addition to the alignment control,

In both cases the alignment time is dependent on the time it takes to filter
the measurement noise satisfactorily from the signal, Analogous to the physical
gyrocompass, the accuracy that can be achieved is determined by the gyro drift

and accelerometer bias,

A logical way of combining these two methods is to use the first one to com-
pute an approximate initial alignment matrix which is then refined by the second
method,

16
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